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DEVELOPMENT OF METHODOLOGIES FOR THE ESTIMATION

OF THERMAL PROPERTIES ASSOCIATED WITH AEROSPACE VEHICLES

Elaine P. Scott

Department of Mechanical Engineering

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061-0238

1. INTRODUCTION

A thermal stress analysis is an important aspect in the design of aerospace structures and

vehicles such as the High Speed Civil Transport (HSCT) at the National Aeronautics and Space

Administration Langley Research Center (NASA-LaRC). These structures are complex and are

often composed of numerous components fabricated from a variety of different materials. The

thermal loads on these structures induce temperature variations within the structure, which in turn

result in the development of thermal stresses. Therefore, a thermal stress analysis requires

knowledge of the temperature distributions within the structures which consequently necessitates

the need for accurate knowledge of the thermal properties, boundary conditions and thermal
interface conditions associated with the structural materials.

The goal of this proposed multi-year research effort was to develop estimation methodologies

for the determination of the thermal properties and interface conditions associated with aerospace

vehicles. Specific objectives focused on the development and implementation of optimal

experimental design strategies and methodologies for the estimation of thermal properties

associated with simple composite and honeycomb structures. The strategy used in this multi-year

research effort was to first develop methodologies for relatively simple systems and then

systematically modify these methodologies to analyze complex structures. This can be thought of

as a building block approach. This strategy was intended to promote maximum usability of the

resulting estimation procedure by NASA-LaRC researchers through the design of in-house

experimentation procedures and through the use of an existing general purpose finite element
software.



2. SPECIFIC OBJECTIVES

To achieve the overall research goal to develop estimation methodologies for the

determination of the thermal properties and interface conditions associated with aerospace vehicles,

the research tasks were divided into three phases; each lasting approximately one year. Specific

objectives were then formulated for each of these phases. These objectives are outlined below for

each phase.

In the first phase, the efforts were primarily directed towards the estimation of thermal

properties in isotropic materials, with some limited efforts towards the analysis of anisotropic
materials; the stated objectives for the first phase were to

1.1 develop methodologies, including optimal experimental procedures, for the

estimation of the thermal properties of isotropic materials at room temperature,
and

1.2 extend these methodologies for the estimation of the thermal properties of

anisotropic materials in two orthogonal planes.

In the second phase, the efforts were primarily directed towards the estimation of thermal

properties in anisotropic materials; here, the stated objectives were to

2.1 develop and implement methodologies, including optimal experimental designs,

for the estimation of the thermal properties of anisotropic materials,

2.2 initiate the development of methodologies for the estimation of temperature

dependent thermal properties, and

2.3 initiate the development of methodologies for the determination of thermal

interface conditions between adjacent structural components.

The final phase of work built on the previous efforts with additional efforts directed towards

the analysis of honeycomb sandwich structures. The stated objectives for this phase were to

3.1 implement the procedure for the estimation of in-plane thermal properties, using

optimal experimental parameters,

3.2 develop methodologies for the estimation of thermal contact resistance for

fastened structures,

3.3 continue the development of optimal experimental design strategies, and

3.4 develop methodologies for the determination of effective and mode-dependent

thermal properties of sandwich structures.



3. METHODS AND ACCOMPLISHMENTS

The methods used to meet the stated objectives and the resulting accomplishments are

outlined below. The methods and results for the analysis of isotropic and the one dimensional

analysis of anisotropic materials, including optimal experimental design and experiments at elevated

temperatures, are presented in Sections 3.1 and 3.2, respectively, while the methods and results for

the two dimensional analysis of anisotropic materials are presented in Sections 3.3. and 3.4,

respectively. The methods used to design experiments and estimate radiative and conductive

properties of honeycomb sandwich structures are presented in Section 3.5, while the results are

given in Section 3.6. Efforts to estimate contact resistance are presented in Section 3.7, and finally,

the development of new optimal design strategies, based on genetic algorithms, are presented in
Section 3.8.

3.1 Estimation of Thermal Properties - One Dimensional Analysis

The estimation of the thermal properties using a one dimensional analysis included an

estimation procedure, a mathematical model, and experimental measurements. Prior to conducting

the experiments, the experimental parameters were optimized. An overview of the methods used

to perform these tasks is presented in the following subsections. Many of the details of this work

can be found in the progress report by Scott and Moncman (1994).

3.1.1 Estimation Procedure

The methodology used to estimate the thermal properties is based on the minimization of an

objective function containing experimental and calculated temperatures with respect to the unknown

thermal properties, thermal conductivity and volumetric heat capacity. This procedure is called the

Gauss method. The Box-Kanemasu procedure is a modification of this method which can facilitate

convergence in some cases; a detailed discussion of the method is given by Beck and Arnold (1977).

In the Gauss method, the objective function is the least squares function, S, where

S --[r-r(b) ]r[r-r(t,) ] (1)

The matrix Y contains experimental temperatures, and the matrix T(b) contains calculated

temperatures at corresponding times and locations. The vector b contains the unknown parameters

to be estimated. In the estimation procedure, the objective function is minimized with respect to the

unknown parameters in b. This procedure can be implemented by differentiating Eq. (1) with

respect to b, setting the resulting expression equal to zero, and then solving for b as shown below.

b = [X r X ]-'X(Y-T) (2)

where the matrix X is called the sensitivity matrix, and it is defined as

X = V_T r (3)

This matrix is important in that it indicates the sensitivity of the temperature response with respect

to changes in a given parameter.

The temperatures contained in Y are obtained from experiments involving a heater which

imposes a heat flux at the boundary of a sample, and the calculated temperatures contained in the



vectorT are determined from a mathematical model of the experimental system. Descriptions of

both the mathematical model and the experimental procedures are found in the following
subsections.

3.1.2 One Dimensional Mathematical Model

The formulation of the mathematical model was based on the experimental system being

analyzed, and the model consisted of a set of equations from which temperature was determined.

In the one dimensional case, the solution to these equations was formulated both analytically and

numerically. The numerical solution involved the use of the finite element code Engineering

Analysis Language (EAL, Whetstone, 1983). The code has been and continues to be used by

researchers in the Thermal Structures Branch at NASA-LaRC, and therefore, the utilization of this

existing software has the advantage that NASA-LaRC researchers are already familiar with the code,

and thus, enhancing the usability of the resulting parameter estimation software.

In the mathematical model, one-dimensional heat transfer was considered through a thin plate

with an aspect ratio such that the two-dimensional heat transfer effects at the edges could be ignored.

One plane boundary was considered to be at a known constant temperature, and a heat flux was

imposed at the second plane boundary. The heat flux boundary condition was necessary for the

independent estimation of thermal conductivity and volumetric heat capacity.

The temperature distribution within the material was determined from conservation of energy:

-_x_ qY"_'x) °Y"_'t 0<x<L t>0 (4)

where T is temperature, k,_, and L are the effective thermal conductivity and the thickness,

respectively, in the direction of heat transfer, x, C,_, is the effective volumetric heat capacity (or the

product of density and specific heat), and t is time. The heat flux and temperature boundary

conditions, along with the initial condition can be described as

-k_.--_ = q(t) x = 0 t > 0 (Sa)

/

x=0

T(x,t) = To(t) x = L t > 0 (5b)

T(x,t) = To 0 ,: x _ L t=0 (6)

where the heat flux, q(t), the temperature at x = L (To(t)), and the initial temperature, T_, are known.

3.1.3 Basic Experimental Set Up for One Dimensional Analysis

The basic experimental apparatus for the one-dimensional case consisted of a thin resistance

heater positioned between two (nearly) identical samples and copper blocks placed on the opposite

sides of the samples. In this symmetrical set up, the heater was used to provide the heat flux

boundary condition, and the copper blocks were used to provide approximate constant temperature

boundary conditions. Thermocouples were positioned between the heater and the samples to

measure the temperatures required for the estimation procedure. Thermocouples were also placed

between the sample, copper block interfaces to determine the temperature boundary condition.
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3.1.4 Optimal Experimental Design - Methods

The basic experimental design described above requires selection of the experimental

parameters, including the heating time, temperature sensor location, and total experimental time.

Prior to conducting the experiments, an optimization procedure was used to determine the

experimental parameters required for an optimal experimental design. The objective here was to

develop an optimal experimental design which would produce temperature measurements which

would provide the smallest confidence regions for the estimated thermal properties.

The first step in the optimization procedure was to define an optimization criterion. Recall

that the objective of the experiment was to minimize the confidence regions of the resulting property

estimates. This can be accomplished through the maximization of the sensitivity of the temperature

measurements with respect to the unknown thermal properties. The criterion used in this study is

called the D-criterion; the objective here is to maximize the dimensionless determinant, D +, of the

X*rX * matrix, which contains the products of the dimensionless sensitivity coefficients. These

coefficients indicate the sensitivity of the temperature response with respect to a given parameter

and were obtained by differentiating temperature with respect to the unknown parameter. The

dimensionless sensitivity coefficients used in this study are given by

k_r dT
X t" = (7)

qoL/koy dk oy

and Xz. = Coy c3T (8)

qoU oyacoy

where 7", k¢, C¢, and L were defined previously, and qo is a nominal heat flux.

Once the sensitivity coefficients were determined, the dimensionless determinant for the case

of two parameters was found from (Beck and Arnold, 1977):

D" = Ix'rx'l
(9a,b)

where

'
p--I

Here, m is the number of temperature sensors used, and t ÷, tN÷ and T,_ ÷ are defined as

kqyt " kqytm T_,,,=- (T,_,-T) (lla,b,c)t" - tN -

COYLz C_rlL 2 qoL/koy

where tN is the total experimental time, and T,,,,_ is the maximum temperature reached between the

start and end of the experiment, and T_ is the initial temperature.



3.2 Estimationof ThermalProperties- One Dimensional Results

The results from the one dimensional analysis included the optimization of the experimental

design and the estimation of the thermal properties of composite and Pyrex samples as functions of

temperature.

3.2.1 Optimal Experimental Design - Results

The first optimal experimental parameter determined was the sensor location. The

dimensionless determinant was determined for a number of different sensor locations and several

different heating times. It was found that the determinant was maximized when the sensor was

located at the heated surface (x ÷ = 0.0) for all heating times. This result was expected since the

maximum sensitivity coefficients for both properties occurred at the heated surface.

The next experimental parameter that was determined was the optimal heating time. This was

obtained by calculating the dimensionless determinant, D ÷, analytically as a function of the total

experimental time, t_, for various dimensionless heating times, C. Here, the heat flux was assumed

constant over th÷ and zero for t > th ÷ . A number of different dimensionless heating times were

analyzed, and the optimal heating time was determined from the case producing the largest

dimensionless determinant. It was found from this analysis that the optimal dimensionless heating

time, th.op,+, is 2.2 for the basic experimental design considered here. However, it was also found

that the magnitude of the dimensionless determinant changed little between dimensionless heating

times of 2.0 and 2.5. Therefore, any values within this range will be close to the optimal value and

will provide similar results in the estimation procedure.

The last parameter that was determined was the optimal experimental time. In order to see
the effect of added data to the value of the determinant, D ÷, the determinant was calculated from

Eqs. (9) and (10), but without averaging the integral contained in Eq. (10) over time. The results

indicated that after a dimensionless time of approximately five, the determinant no longer changed

significantly. This implies that after this dimensionless time, the temperatures are reaching steady

state and little additional information is being provided for the estimation of the thermal properties.

Therefore, the experiments can be concluded after a dimensionless time, ts ÷, of approximately four

to five. Note that to be conservative, a value of five was chosen in the experimental studies.

+

In summary, the optimal experimental parameters found were x ÷ = 0.0, th.op, = 2.2, and
tN+ = 5.

3.2.2 Estimation Thermal Properties - One Dimensional Results

Several sets of experiments were performed assuming a one dimensional analysis. Each of

these are described in the following subsections.

3.2.2.1 IM7/5260 Composite Samples - Results at Room Temperature

Experiments were first conducted at room temperature using the experimental set-up

described in Section 3.1.3 and continuous IM7 graphite fiber, Bismaleimide epoxy matrix

(IM7/5260) composite samples, each approximately 6.8 mm thick. Based on the dimensionless



optimal experimentalparameterspresentedin Section3.2.1,the sensors were placed next to the

holed surface, the heating time was set equal to 180 seconds, and a total experimental time equal

to approximately 500 seconds was used. The experiment was performed three times using the same

samples and with voltage inputs to the heater of 4.9V, 6.1V, and 7.3V, resulting in maximum

temperature rises of approximately 2"C, 3"C, and 4.5°C. These experiments were performed at

NASA Langley Research Center in the Thermal Structures Branch Laboratories.

The measured temperatures obtained from these experiments were then used in the estimation

procedure to determine the thermal conductivity perpendicular to the fiber axis and the volumetric

heat capacity. The thermal properties were estimated using both an analytical mathematical model

and a f'mite element model (using EAL) to calculate the temperatures in the estimation procedure.

The results for the three experiments using the two different mathematical models are given in Table

1, along with their mean and 95% confidence interval for the analytical model. Note that there was

very little different between the solutions obtained using the analytical model and EAL. To

determine how accurately the calculated temperatures matched the measured temperatures, the Root

Mean Square (RMS) error was computed, where

mr
RMS = _-, (Yi - Ti) 21 n,

i=l

(12)

Here, T_ and Yi are the calculated and measured temperatures, respectively, at the ith time step, and

n, is the total number of temperature measurements. The RMS values were calculated two different

ways. First the measured temperatures for each individual experiment were compared with

calculated values using the thermal properties estimated for that experiment; these values are

indicated by RMSI in Table 1. The RMS values were then determined using the experimental

temperatures and temperatures calculated using the mean thermal properties values (also shown in

Table 1); these values are indicated by RMSM.

3.2.2.2 IM7/5260 Composite Samples - Results at Elevated Temperatures

Additional experiments were conducted using the IM7/5260 composite samples at elevated

temperatures at NASA-LaRC. The samples were used in the basic experimental set-up as described

previously with the exception that the entire set-up was placed in an oven, and experiments were

conducted at four different initial temperatures ranging from room temperature to approximately

125°C. Three experiments were conducted at each temperature. The measured temperatures

obtained from these experiments were then used in the estimation procedure to determine the

thermal conductivity and volumetric heat capacity. The results of these tests are shown in Table 2.

Good repeatability was found between tests at the same initial temperature, and both thermal

conductivity and heat capacity were found to increase with temperature. The thermal conductivity

was found to increase approximately 12% from 20°C to 125°C, while the volumetric specific heat

increased approximately 28% over the same temperature range.



Table I. Estimatedeffective thermal conductivity, k_ and volumem'c heat capacity, C,¢, from

Experiments 1, 2, and 3, along with the Root Mean Square error calculated from

individual and mean thermal property estimates (RMS t and RMS_).

Exp. 1 Exp. 2 ] Exp. 3

Analytical I EALAnalytical EAL

keg (W/m °C) 0.519

Ce_, (MJ/m3°C) 1.425

RMSt ( °C)

% Max. Temp.
Rise

RMS_ (°C)

% Max. Temp.
Rise

0.0526

0.24%

0.0548

0.34%

0.518

1.420

:::i%i:_%_ii::i_

0.504 0.503

1.505 1.495

0.0815 "

0.36% !_

._i

0.0908

0.40%

Analytical EAL

0.529 0.516

1.498 1.467

0.06520.26%

0.0827 _: ':

_t__..'.-!:_:_.
0.34% i_ ,

Mean

Analytical EAL

0.517_-0.023 0.516

1.48:t-0.081 1.467

.... _" _ ' _:''. _._.-':,.'_:i_i_:i_:i_i!i::_:_:

.-. : ...-.. ===================================__-,... _,._.:._:................
._, ._1".:._.,_. .._.-:_.:_:.. ==============================================

_'. : _...._. ::::::::::::::::::::::::::::::::::

_: ":_?.:::::::::::::: ===========================================

_ . _:._.i"_:_! =============================

Table 2. Estimated Thermal Conductivity, k, for Composite Samples MJS92C6 and MJS92C7

Using Symmetrical Stacking Arrangement (E. P. Scott, at LaRC, August 4, 1994).

File

Name
Initial Temperature

(°c)
k

(w/re°c)
c

(MJ/m_°C)

0.607

943A 20. 0.568 1.50

943B 20. 0.573 1.54

943C 2 i. 0.570 1.57

943D 49. 0.590 1.59

943E 50. 0.580 1.73

943F 50. 0.580 1.76

943G 89. 0.603 1.80

943H 88. 0.607 1.80

943I 89. 1.80

943J 124. 0.633 1.98

943K 125. 0.633 1.98

943L 125. 0.647 1.96

8



3.2.2.3Pyrex Samples -ResultsatElevated Temperatures

A set of experiments was conducted over the same temperature range using a Pyrex standard.

These experiments were also performed at the NASA-LaRC Thermal Structures Branch. The

experimental set-up was identical except that the samples were 2.4 cm thick. Since the optimal

heating time is based partly on the dimensions of the samples, the optimal heating times were much

longer than those required for the Pyrex samples (32.minutes compared with 1.5 minutes). Once

again, experiments were conducted over a temperature range from room temperature to

approximately 125"C, using several different initial temperatures. These results are shown in Table

3. The thermal conductivity was found to increase approximately 17% over the temperature range

tested, while the volumetric heat capacity increased approximately 13%. Note that the variability

in the estimates from experiments at the same initial temperature was much higher than previously

observed with the composite samples. One possible problem was that the oven used did not

maintain a constant temperature, and due to the long testing time with these samples, this could have

had some influence. It is desired to repeat these tests using another oven. The heat capacity values

have a higher variability than the thermal conductivity values because, as shown in the previous

reports, the sensitivity is higher for thermal conductivity. These results were compared with

estimates for thermal conductivity provided by the manufacturer. A bias was present in the

estimates for thermal conductivity; all are approximately 12-13 percent higher than the values

provided by the manufacturer. One explanation for this could be that two dimensional effects were

present due to the thickness of the samples provided.

3.2.2.4 IM7/5260 Composite Samples - Results from Unsymmetrical Analysis

Another set of experiments was performed at NASA-LaRC using the IM7/5260 composite

samples and a modified experiment designed to simulate the estimation of thermal properties from

data obtained from a large structure. Here, a resistance heater was placed on top of a composite

sample, and the exposed surface of the heater was well insulated, forming an unsymmetrical

stacking arrangement. Experiments were then conducted from room temperature to approximately

130°C with at least three tests at four different initial temperatures. The results are shown in Table

4. The thermal conductivity values were less than five percent lower than the estimates using the

symmetrically stacked samples, thus indicating that this type of design has a good potential for use

in estimating properties in large structures.

9



Table 3. Estimated Thermal Conductivity, k, for Pyrex Samples (E. P. Scott at LaRC, July 20,
1994).

File

Name

942A 21.

942B 23.

19.942C

942E

942F

Initial Temperature

(*C)

62.

51.

k C

(W/m°C) (MJ/m3°C)

1.30 1.93

1.27 1.82

1.22

1.33

1.29

1.89

1.78

1.81

942H 90. 1.37 1.84

942I 91. 1.27 2.24

942K 107. 1.39 1.94

942L 107. 1.40 1.88

942M 106. 1.47 1.90

942N 118. 1.49 2.07

9420 117. 1.43 1.99

942P 115. 1.41 1.94

942Q 126. 1.50 2.12

942R 126. 1.48 2.10

942S 126. 1.47 2.16

942J 131. 1.49 2.05
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Table4. Estimated Thermal Conductivity, k, for Composite Samples MJS92C6 and MJS92C7

Using Unsymmetrical Stacking Arrangement (E. P. Scott, at LaRC, August 4, 1994).

File

Name
Initial Temperature k

(*C) (W/mOC)

944A 21. 0.571

944B 21. 0.562

944C 21. 0.562

944D 21.

944E 21.

944I 51.

944J 51.

0.563

0.558

0.551

0.560

C

(MJ/m3°C)

1.65

1.50

1.62

1.61

1.64

1.72

1.71

944K 51. 0.549 1.67

944L 91. 0.577 1.93

944M 90. 0.570 1.88

944N 91. 0.575 1.93

944F 129. 0.605 2.17

944G 129. 0.604 2.09

944H 130. 0.614 2.10
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3.3 Estimation of Thermal Properties - Two Dimensional Analysis

The two dimensional analysis was conducted using procedures similar to the one dimensional

analysis described in Section 3.1. In this case, the analysis was directed towards composite samples,

and the thermal conductivity parallel and perpendicular to the fiber axis of the composite sample

and the volumetric heat capacity were sought. Therefore, three properties were sought

simultaneously rather than two. A summary of the analysis and the methods used to perform these

tasks are presented in the following subsections. Details of this work can be found in the progress

report by Scott and Hanak (1995).

3.3.1 Estimation Procedure

The methodology used to estimate the thermal properties in the two dimensional analysis is

the same as that used for the one dimensional analysis described in Section 3.1.1. In using this

methodology, it should be noted that the properties sought should be uncorrelated; that is, the

sensitivity coefficients need not be linear or near linear dependent. This was found to be a critical

factor as discussed in Section 3.4.

3.3.2 Two Dimensional Mathematical Model

In the two dimensional analysis, both analytical and numerical mathematical models were

used. The analytical model was first used to optimize the experimental design, and then the

numerical model was used in estimating the thermal properties. In each case, two different

configurations were considered. The first consisted of an imposed heat flux perpendicular to the

fiber axis over a portion of one boundary (with the remainder of the boundary insulted) and known

constant temperatures at the remaining three boundaries. The second configuration also has a heat

flux imposed over a portion of one boundary, only this time, the boundary opposite to the heat flux

is maintained at a constant temperature, while the remaining two boundaries are insulated. Both

configurations are shown in Fig. 1.

Heat Flux

_ J, j, j, Insulated
• •_ Z/////////,

X_ConfigYration 11_

Constant Temperature

Heat Flux

_ _ Insulated///////////.

Insulated _ x "ryConfiguration2 _ lnsulated

Constant Temperature

Figure i. Two-dimensional Boundary Conditions.

12



In both configurations, the temperature distribution within the material can be determined

from conservation of energy:

or/ or) : c or"_x[ *-_l'"_xJ + Y-_Oy) _ O<x<Lx O<y<Ly t>O (12)

where kr._o, and y are the effective thermal conductivity and position, respectively, perpendicular

to the direction of heat transfer. The boundary conditions can be described by

8T
-kx q/-- = qx x=0 0<y<Lp 0<t< th (13)

- Ox =0 x=0 O<y<Lp t>t h

=0 x=0 Lp<y<Ly t>th

T(x,y,t)=T_ 0<x<L, 0<y<Ly t=0 (14)

dT
- 0 x=0 0<y<Ly t>0 (15a)

8x

T(x,y,t)=To., x=L, 0<y<Ly t>0 (15b)

The boundary conditions along the y-axis are for the first configuration are

T(x, y, t) = To.y1 0 < x < L, y = 0 t > 0 (16a)

T(x,y,t)=To.y2 0<x<L, y=Ly t>0 (16b)

while

dT

ay
OT

Oy

the boundary conditions at the same locations for the second configuration are

- 0 0<x<L, y=0 t>0 (17a)

- 0 0<x<L, y=Ly t>0 (17b)

The analytical solution was based on the use of Green's functions. This resulted in a double

series containing both transient and steady state terms. To increase computational efficiency, the

steady state terms, which only needed to be determined once for each run, were determined

separately.

The numerical f'mite element model was formulated using EAL. It was found in conducting

the experiments, that the "constant temperature" boundary conditions were not exactly constant.

Therefore, temperature measurements from thermocouples placed at the location of the "constant

temperature" boundary conditions were incorporated into the finite element code.

3.3.3 Basic Experimental Set Ups for Two Dimensional Analysis

Two basic experimental apparatuses were used for the two-dimensional case. Both consisted

of a thin resistance heater positioned between two (nearly) identical samples and aluminum blocks

13



placed on the opposite sides of the samples. UnLike the one dimensional case, the heat flux was only

applied to a portion of the sample. The edges of the composite were insulated on two opposite sides

to maintain two dimensional heat transfer. The remaining two edges were either placed in contact

with two aluminum blocks which acted as heat sinks for the constant temperature boundary

condition (configuration 1) or insulated (configuration 2).

3.3.4 Optimal Experimental Design - Methods

The basic experimental designs described above requires selection of the experimental

parameters, including the heating time, heating area, temperature sensor location along both x and

y axes, and total experimental time. Prior to conducting the experiments, these experimental

parameters were optimized to produce temperature measurements which would provide the smallest

confidence regions for the estimated thermal properties. Once again, the D-criterion and the

optimization methodology discussed in Section 3.1.4 were used. A two-phase parametric study was

used to optimize the parameters. The first phase included determining the general range of the

optimal values, while the second phase narrowed this range to determine the values more precisely.

The procedure was iterative in that after the general range was determined, one parameter was

varied while the others were held constant. Once the value of that parameter with the highest

determinant was found, the process was repeated with the next parameter. The entire sequence was
then repeated with the updated parameter values on the next iteration.

3.4 Estimation of Thermal Properties - Two Dimensional Results

The results from the two dimensional analysis included the optimization of the experimental

design and the estimation of the thermal properties of the composite samples.

3.4.1 Optimal Experimental Design - Results

The first optimal experimental parameter determined was the sensor location along the x ÷

axis, parallel to the heat flow. Once again, the optimal location was found to be at the heated

surface (x + = 0.0). Then, the sensor location along the y ÷ axis, perpendicular to the heat flow, was

determined. The optimal location for configuration 1 was found to be at y÷ = 0.15, while the

optimal location for configuration 2 was found to be at y+ = 0.

The next experimental parameter that was determined was the optimal heating time. This was

obtained by calculating the dimensionless determinant, D ÷, analytically as a function of the total

experimental time, t_, for various dimensionless heating times, th÷. Here, the heat flux was assumed

constant over th÷ and zero for t > th÷. It was found from this analysis that the optimal dimensionless

heating time, t_om*, for both configurations is 1.40. A related experimental parameter is the heating

area. In this case the optimal heating area for configuration 1 was over the entire surface, that is

Lp ÷ = 1.0, while for configuration 2, the optimal area was found to be L _, ÷ = 0.15. Finally, a

conservative optimal dimensionless total experimental time was found to be equal to 4.0. It should

be noted that using the respective optimal values, the dimensionless determinant for configuration

1 was found to be slightly higher than that for configuration 2, indicating that slightly better

estimates could be found using configuration 1.
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3.4.2 Estimation of Thermal Properties

The effective thermal conductivity parallel and perpendicular to the fiber axis and the

effective volumetric heat capacity were sought in this analysis. The one concern was due to the

possible correlation apparent between the two thermal conductivities parallel and perpendicular to

the fiber axis. Therefore, prior to estimating these properties with experimental data, the procedure
was first tested with simulated data.

The mathematical model was used to generate temperatures which were in turn used in the

estimation procedure to obtain the property values which ideally would be equal to the input values

used in the mathematical model. This is a common procedure used to assess estimation procedures.
At first, exact data were used; that is, no experimental errors were added to the data obtained from

the model. All three original thermal properties were obtained from the estimation procedure using

exact data, verifying that the process was possible in the best scenario. However, it was also found

that very high correlation existed between the two conductivity values, as expected.

Experiments were then performed using configuration 1 and the optimal experimental

parameters. The property estimates were again sought; this time with experimental data.

Unfortunately, the solution did not converge using the Box-Kanemasu procedure. This indicated

that an improved estimation procedure was needed which could handle correlation between the

parameters. This has been the focus of additional efforts as noted in Section 3.8. In the meantime,

an effort was made to estimate simultaneously the thermal conductivity parallel to the fiber axis and

the volumetric heat capacity, given the thermal conductivity perpendicular to the fiber axis from the

one dimensional analysis.

Prior to conducting experiments to estimate kr, _, andt_,, the experimental designs for

configurations 1 and 2 were re-optimized for the estimation of only these two properties. The

optimal experimental parameters for configuration 1 were found to be x + = 0.0, y÷ = 0.15, th÷ = 1.45,

and 4 ÷ = 0.30, and the optimal parameters for configuration 2 were found to be x ÷ = 0.0, y+ = 0.0,

th+ = 1.65, and/v + = 0.13. These values had to be adjusted slightly because heaters were not feasibly

available at either of the optimal heating areas found. Therefore, the experiments were re-optimized

with the heating area fixed at the closest available heater size. The adjusted values were found to

bex + = 0.0, y÷ = 0.15, th÷ = 1.35, and L_,+ = 0.25 for configuration 1, and x ÷ = 0.0, y+ = 0.15, th+ =

1.65, and L_,÷ = 0.11 for configuration 2. In this case, the dimensionless determinant for

configuration 1 was found to be almost twice as large as that for configuration 2, indicating that if

only these two properties are sought, it is a much better experimental design to use.

Once the optimal experimental designs were determined, experiments were first conducted

to estimate kr_n, and_,. Nine experiments were performed using the optimal experimental

parameters from three separate experimental set ups each repeated three times. Additional

experiments were performed to verify the optimization procedure using non-optimal experimental

parameters. The confidence intervals of the resulting estimates were then compared with those

obtained using optimal values. First, experiments were conducted using dimensionless heating times

associated with dimensionless determinants (D ÷) equal to 20% and 80% of the maximum value.

This resulted in non-optimal heating times equal to 0.75 and 0.29 for configuration 1 and 0.88 and

0.32 for configuration 2. The second parameter analyzed was the sensor location along the y-axis.

The non-optimal heating times used here were y÷ = 0.05 and y÷ = 0.23 for configuration 1 and y÷
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= 0.09 and y* = 0.15 for configuration 2. The last experimental parameter to be analyzed was the

heating area. The non-optimal values selected in this case were Lt,÷ = 0.50 and/._,÷ = 0.75 for

configuration I and Lp÷ = 0.25 and Lp÷ = 0.75 for configuration 2.

The resulting means of the estimates of kr, _, and Ce_, from the nine experiments performed
with each set of the optimal and non-optimal experimental parameters are shown in Table 5.

Several observations can be noted from these results. First, based on the confidence regions, the

optimal designs provided the most accurate combined property estimates. Note also that an

individual property might be estimated with greater accuracy at a non-optimal setting, but the

combination of properties maintained a higher accuracy at the optimal settings. Furthermore,

configuration 1 supplied more information, and therefore, was a better experimental design than

configuration 2. Finally, the sensor location was found to the most sensitive experimental parameter

investigated; therefore, it is important that the sensors not be placed away from the optimal location.

Table 5. Estimated Mean Values for the In-Plane Thermal Conductivity, ky.elr, and Volumetric

Heat Capacity, C,¢, from Configurations I and 2.

Experimental Parameters

Optimal Values

Non-optimal

heating time,

Non-optimal

sensor location,

Non-optimal

heating area,

y* = 0.05 t,
0.092

y÷ = 0.231,
0.152

Lp ÷ = 0.75 I'_

1: Configuration 1; 2: Configuration

Configuration 1

1.89!-0.04

1.78!_).06

1.54_--'-0.06

2.15:z-0.05

1.99:_4). 13

2.05:t-0.05

(MJ/m3K)

1.53-4-0.01

1.48:L-0.02

1.43:t'0.02

1.98_'0.03

1.48_+0.03

1.61_'0.03

1.55:Z'0.02

k_

(W/mK)

Configuration 2

(MJ/m3K)

2.00_.04

1.88:L-0.10

1.62:L-0.05

2.61 :L-0.06

6.63:_.21

1.64:L-0.06

2.04:t'0.05 2.19:_--0.04

1.56_+0.04

1.60_+0.05

1.56_+0.03

1.67_+0.02

1.52_--'-0.03

1.54_q).01

1.44_+0.02
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3.5 Estimationof Thermal Properties of Honeycomb Sandwich Structures - Analysis

A titanium honeycomb core sandwich structure was analyzed assuming one dimensional heat

transfer and conductive and radiative heat transfer to estimate both conductive and radiative

properties. A summary of the analysis and the methods used to perform this analysis are presented

in the following subsections. Details of this analysis can be found in the progress report by Scott and
Copenhaver (1996).

3.5.1 Estimation Procedure

Initially, the methodology used to estimate the thermal properties in this analysis was the

same as that used for the one dimensional analysis described in Section 3.1.1. In using this

methodology, it should be noted that the properties sought should be uncorrelated; that is, the

sensitivity coefficients need not be linear or near linear dependent. This was found to be a crdcal

factor; therefore, a constrained optimization method called the Exterior Penalty Function method
was used instead.

This strategy was used because it is relatively simple incorporate into the optimization

process. It treats the objective function as an unconstrained function but provides a penalty to limit

constraint violations. The imposed penalty is initially small but increases with each iteration in

order to prevent ill-conditioning. This process requires the solution of several unconstrained

problems in order to obtain the optimum constrained problem. Again, details of the procedure can

be found in Scott and Copenhaver (1996).

3.5.2 Mathematical Model of the Honeycomb Structure

In this analysis, one dimensional heat transfer was sought through the thickness of the

honeycomb core material. Figure 2 shows a schematic of the heat transfer model. A heat flux was

assumed on one side of the sample while the other side was assumed to be at a constant temperature

or insulated. The side edges were also assumed insulated. A preliminary analysis at steady state

indicated that the significant modes of heat transfer were due to conductance through the webs of
the honeycomb structure and radiation heat transfer within the interior of each core element for the

temperatures under consideration. A finite element model using EAL was formulated using a

lumped capacitance model for the face sheets and diffuse, gray body in the interior of the core. Note

that the conductance through the air in the interior of the core was neglected. The core material

consisted of Ti-6AI-4V titanium, and the face sheets consisted of an aluminum/boron composite.

Since the specific heat and thermal conductivity of core material, Ti-6AI-4V, are well known,

these properties were not estimated. The most important feature of the core is the wall thickness

which varied due to the fabrication process; therefore, this was estimated instead of the thermal

properties of the core material. In addition the emissivity within the core cell was sought, along
with the capacitance of the face sheet.
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Honeycomb Sandwich

samples

Insulated or constant

,temperature boundary
condition

Insulatton Insulation

Figure 2. Schematic of Honeycomb Core Sandwich Structure and Applied Boundary Conditions.

3.5.3 Basic Experimental Set Ups for the Analysis of the Honeycomb Materials

Two basic experimental apparatuses were used in this analysis. Both consisted of a thin

resistance heater positioned between two (nearly) identical samples and either aluminum blocks or

insulation placed on the opposite sides of the samples. The edges of the samples were insulated to

maintain one dimensional heat transfer. A thermistor was placed on either side of the heater and

on the opposite side of the samples in between the sample and the aluminum blocks or insulation

to measure temperature. The entire experimental set up was placed in a temperature controlled oven

for the experiments. Experiments were conducted at initial temperatures of approximately 295 K,

345 K, 395 K, 445 K, and 495 K, with three repetitions at each temperature for each basic

experimental set up; therefore, a total of 30 experiments were conducted. Details of the

experimental apparatus can be found in Scott and Copenhaver (1996).

3.5.4 Optimal Experimental Design - Methods

The basic experimental designs described above requires selection of the experimental

parameters, including the heating time and the total experimental time. Prior to conducting the

experiments, these experimental parameters were optimized to produce temperature measurements

which would provide the smallest confidence regions for the estimated thermal properties. Once

again, the D-criterion was first used, but in addition, a second method was used which sought to

minimize the largest confidence interval. This method is called the scaled confidence interval

approach and corresponds to maximizing the minimum eigenvalue of the x'rx matrix.

3.6 Estimation of Thermal Properties - Honeycomb Core Structure Results

The results from the analysis of the honeycomb structure included the optimization of the

experimental design and the estimation of the thermal properties of composite samples.

3.6.1 Optimal Experimental Design - Results

The first optimal experimental parameter determined was the optimal heating time. The

optimal time was first found using the D-criterion at temperatures of 295K, 345K, 395K, 445K, and

495K. The specified temperature boundary condition configuration was evaluated first. Here the
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optimal heating times ranged from 4560 sec at295 K to 1500 sec at495 K. Long heating times

were not desireddue to thelackof abilityto maintainconsistentboundary conditions.Therefore,

thescaledconfidenceintervalapproach was appliedas an alternatemethod. Here itwas found that

a localminimum could be used without significantlossof informationand with a reductionin the

experimentaltime. Therefore,using thisapproach, theoptimal experimentaltime was found tobe

3000 seconds at295 K, 2000 secondsat345 K and 395 K, 1690 secondsat445 K, and 1500 seconds

at495 IC The same procedurewas used tofindthe optimal heatingtime forthe configurationwith

an insulatedboundary away from the heatedsurface.Here, therecommended heatingtimes were

found to be 400 seconds at295 K, 345 K and 395 K, and 300 seconds at445 K and 495 K.

The total experimental time was also optimized. The optimal values for the specified

temperature boundary condition were found to be 4600 seconds at 295 K, 3300 seconds at 345 K,

3100 seconds at 395 K, 2600 seconds at 445 K, and 2500 seconds at 495 K. The optimal values for

the insulated boundary condition case were found to be 1630 seconds at 295 K, 1560 seconds at 345

K, 1500 seconds at 395 K, 1460 seconds at 445 K, and 1400 seconds at 495 K.

3.6.2 Estimation of Thermal Properties

The volumetric heat capacity of the face sheet, the conduction area of the core web, and the

emissivity of core cell were the properties sought in the analysis of the honeycomb materials. One

concern in this analysis was due to the possible correlation apparent between properties, particularly

between the conduction area and the emissivity. The first attempts at estimating these properties

using the Box-Kanemasu method resulted in non-convergence; therefore, the Exterior Penalty

Function method was used, which resulted in convergence of the parameter estimates.

The results for the mean estimates of the volumetric heat capacity, the conduction area, and

the emissivity are shown in Table 6 for both experimental set-ups, along with their respective 95%

confidence intervals. Note that the conduction area was expected to be around 3.5 x 10 5 m 2 from

actual measurements on a number of samples. The data from the insulated experimental set up were

analyzed in two ways. First, the insulation was assumed to be perfect in the mathematical model,

and the sensors next to the heater and at the opposite boundary were included in the objective

function. Due to the long experimental times however, it was suspected upon looking at the

temperature profile at the insulated surface that the insulation at this surface was not perfect.

Therefore, the temperature measurements at this boundary were used as specified temperatures in

the mathematical model, and the estimation procedure was repeated. The results from both of these

cases are shown in Table 6. Note that the specified temperature boundary condition resulted in

estimates with overall smaller confidence intervals.

These mean estimates were used in the mathematical model and the resulting temperatures

were compared with the experimental results at 295 K and 495 K. The root mean squared error

(RMS) as a percentage of the total temperature rise was calculated for the specified temperature and

the insulated experimental set ups at both of these temperatures. The mean estimates from the

specified temperature experiments provided RMS values of 3.0% at 295 K and 13.9% at 495 K,

while the mean estimates from the insulated case with two sensors provided RMS values of 7.9%

at 295 K and 28.1% at 495 K. This provided more indication that the specified temperature

boundary condition was a better one to use for the estimation of the properties under consideration.
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Table6. Mean Estimated Volumetric Heat Capacitance, C, Conduction Area, Ac, and

emissitivy, e, and Associated 95% Confidence Intervals for Specified Temperature and

C (MJ/m3K)

Insulated Experimental Set Ups.

Experimental Set Up

Specified temperature set up 2.99 + 0.11

3.72 -*-0.33(perfect

insulation)

(imperfect

insulation)

2.63 ± 0.13

Insulated set up

A r (m 2)

(0.418 ± 0.042)×104 0.88 ± 0.10

(0.391 ± 0.079)× 104

(0.576 ± 0.098)x 104

0.50±0.11

0.93 ± 0.05

3.7 Thermal Contact Resistance

Imperfect contact between two adjacent structural components can cause discontinuities in

temperature across the two components. These discontinuities can be characterized through the

determination of the contact resistance between the two materials. The procedure proposed for the

determination of contact resistance is similar to that described for the estimation of thermal

properties. In this case, the least squares function is minimized with respect to the contact

resistance. In addition, the mathematical model used to provide the calculated temperatures will be

modified. For example, the governing differential equations for the mathematical model of the one

dimensional system can be described as

k___. cgx Ot 0 < x < La t > 0 (18a)

0 ks La<x<L a t>O (18b)

where LA and L s are the thicknesses of the lower and upper plates, respectively, and La ÷ and La

represent the location on either side of the contact interface. The temperature discontinuity at the

interface can be described by the contact resistance, he:

q= (19)

where q is the heat flux at the interface.

A program was written using EAL to estimate the contact resistance between two adjacent

samples. Preliminary analysis indicates that this approach has good potential in estimating contact

resistance and needs further investigation, including experimentation.
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3.8 Use of Genetic Algorithms in Experimental Design Optimization

Due to the tedious nature of the parametric studies performed to optimize the experimental

designs used in the estimation of the thermal properties and the difficulties encountered in the

simultaneous estimation of correlated properties, alternate methods were sought for the

minimization of the objective function in each case. Since the use of derivatives resulted in

problems in each of these situations, a non-derivative based method was sought. Genetic algorithms

provide for the minimization of an objective function using a probabilitistic directed search without

the use of derivatives and were investigated for use in this study.

Genetic algorithms are based on the principle that each technical problem can be translated

into an equivalent genetic one which can be optimized by means of biological rules. The advantages

are that it can be universally applied and that no prerequisites are required. Also, genetic algorithms

have been shown to avoid local optima thus increasing the chance to obtain global optima

(Krottmaier, 1993; Doyle, 1995). These algorithms, developed by Holland (1975), are based on

genetic and selection mechanisms of nature. Even though they are based on the law of coincidence,

they show a steep gradient with regard to improvements (Krottmaier, 1993). Easily programmed,

they require no prerequisites or assumptions regarding continuity in the search area. Nevertheless,

they have not been widely accepted for engineering applications. This comes from the complexity

associated with the use of traditional binary coding. However, the recent demonstrations with both

integer and real number codings show promise for other applications (e.g., in structural

optimization, Furuya and Haftka, 1993, and in the location of cracks, Doyle, 1995).

In this initial investigation, the objective was to test the proposed optimization strategy based

on a basic elitist genetic algorithm on two optimal design problems previously solved in earlier

phases of this overall research effort. The first case investigated was the optimization of sensor

location and heating time for the simultaneous estimation of two thermal properties of a composite

material. This case is described in Sections 3.1.4 and 3.2.1 and in the progress report by Scott and

Moncman (1994). The second case was the two dimensional study described in Sections 3.3.4 and

3.4.1 and in the progress report by Scott and Hanak (1995).

3.8.1 Basic Elitist Genetic Algorithm

The basic elitist genetic algorithm employed here was modeled after the algorithm described

by Furuya and Haftka (1993). Unlike some traditional optimization techniques that work in the

neighborhood of a design point, this algorithm operated on a population of designs, and it involved

successive operations consisting of selection, crossover and mutation, which simulated the

mechanics of natural genetics. A simplified flowchart of the algorithm is shown in Fig. 3.

In the one-dimensional experiment, a chromosomal string describing a particular design

contained two chromosomes forx, ÷and th÷. In the same logic, in the two-dimensional experiments,

each string contained four chromosomes for the design variables x, ÷, y,÷, Lp ÷ and t h÷. Because the

design variables were continuous, this modified algorithm used real string representation. The

ranges of these variables were bounded by physical as well as practical experimental constraints.

The optimization algorithm was initiated by generating the initial parent population of n s candidate

strings (designs). Each string was created by randomly selecting nc chromosome values (design

variable) from the design space. The strings were then ranked in terms of the value of D ÷.
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Oncetheinitial population was generated, the selection operation began as follows. Parents

were selected by pairs for breeding using a rank-based fitness technique. The fitness of the I th

ranked string was defined asf_ = n, + 1 - L allowing for the high ranked string to have a high fitness

parameter and to be the most likely contribute to the determination of the next generation strings.

The probability of the I th ranked string to be selected as a parent was given by Pt = 2f_/n,(n,+l).

The selection process was then accomplished at random: the I th ranked string was selected if P_._

,_ r _ Pi, where r was a uniformly distributed random number between zero and one,
i-I

j=l

The crossover operation was completed next. The child strings were made by the mating of

the pairs of parents selected for breeding. This process began by generating a random integer k, the

cut-off point, between 1 and no- 1, where nc was the number of chromosomes. A child was designed

by using the first k chromosomes of parent 1 and the remainder from parent 2. In the one-

dimensional analysis, consider the strings with x, ÷ = 0.5, th÷ = 1.0 and x, ÷= 0.7, th ÷ = 1.5 as parents

l and 2, respectively. As n, = 2, the only possible child string is x, ÷= 0.5, t h÷ = 1.5. This process

is called single-point crossover. Note that there exists more elaborated variants of this operation

which could be more efficient with real number coding.

Finally, mutation was implemented by changing at random the value of a chromosome. This

process insured that new chromosomes were generated, thus preventing the solution from locking

on a non-optimum value. The mutation probability p,. is usually small (0.001 _p,.<O. 15) so as not

to interfere with the combination of the best features of parents made by the crossover operation.

In this work, p,. was taken arbitrarily as 0.05. If the chromosome was mutated, it was replaced by

another one randomly chosen from the allowable range of values for that chromosome.

When the operations of selection, crossover and mutation were completed on the n, parent

population, a new generation was created from the n,-I child strings in addition to the best parent

string. This denotes the basic elitist strategy. Over the course of several generations, ng, the
algorithm tended to converge on the string giving the maximum D ÷, which was hence considered

as the predicted optimal design. Note that here the number of function evaluations, f_,_, can be

determined from f_a = n,x(n_+l).

[InitiaIsizePOpulation_.]_Ran--_._n,
Calcu/ate Fitnesses,l_,

Select Parents I-_

Create n= - 1
Children

Next Generation: lChildren+Best Parents

. Yes

Figure 3. Flow Chart for the Optimization Code Based on a Basic Elitist Genetic Algorithm.
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3.8.2 Optimization of Experiments using Genetic Algorithms - Results

The performance of the genetic algorithm was evaluated for the two optimal experimental

design problems described previously. The jobs were run on Virginia Tech College of Engineering's

Silicon Graphics Power Challenge XL server. In each case, an initial investigation of the effect of

the genetic parameters was carded out. The performance of the algorithm was evaluated by
averaging ten runs, with the means and their 95-percent confidence intervals calculated for the

maximum determinant and each design variable. The means were then compared to the optimal

determinants and experimental parameters found by in previous studies. (See Sections 3.2.4 and

3.5.1, Scott and Moncman (1994) and Scott and Hanak (1995)).

3.8.2.1 Results from the One Dimensional Analysis

In the one-dimensional analysis, the design variables to be optimized were x, + and th÷. The

ranges used for each design variable were identical to those used by Moncman. The effect of both

the population size n, and the number of generations n_ were first analyzed to decide which

combination should be utilized in determining the optimal design. In this analysis, the impact of

the computing time (or of the number of function evaluationsf,_) was not investigated because the

dimensionless determinant, D +, was very inexpensive to calculate. From Table 7, one can see that

the maximum D + was obtained for the combination with both the largest n, and ng (case d), as

logically expected. Because the computing time was inexpensive, the combination chosen was the

one with the largest ns and ng that gave the maximum determinant.

Table 8 shows the results of the ten optimization runs performed using the combination of

n_ and n g discussed above. One result is particularly important: the mean of the maximum D ÷ is

higher than the maximum D ÷ found by Moncman using the parametric study. This ensures that

optimal experimental parameters have been obtained and allows for the validation of the

optimization procedure based on genetic algorithms. The final optimal experimental parameters

should be taken as their respective mean values rounded to the most physically possible values. This

would give xs*--0.0, and th*=2.29 for the optimal experimental design. These values are actually

very close to the optimal parameters given by Moncman (x,÷--O.O and th+=2.20).

Table 7. Effect of the Population Size n, and the Number of Generationsgn in the One-
dimensional Experiment.

a 2550 50 50 0.0054 2.13 1.9643

b 10200 200 50 0.0019 2.32 1.9856

c 10050 50 200 0.0017 2.44 1.9810

d 40200 200 200 0.0002 2.24 1.9899

Best 40200 1200 ]200

23



Table 8. Determination of the Optimal Design for the One-dimensional Experiment (n,=n_=200,
f_,_--40200).

Exp.

1

th

2.21

2 0.0006 2.33 1.9896

3 0.0015 2.25 1.9838

4

5

6

7

8

9

10

Mean

0.0001

0.0002

0.0_5

0.0012

0.0007

0.0_2

0.0_5

0.0006±0.0003

0.0000Moncman's

2.33

D+_(10 ÷2)

1.9877

1.9919

2.24 1.9899

2.32 1.9911

2.24 1.9853

2.31 1.9899

2.33 1.9914

2.32 1.9909

2.29 ± 0.04 1.9892 ± 0.0019

2.20 1.9878

Table 8 also outlines a general feature of genetic algorithms, which is that in the analysis,

significant parameters cannot be distinguished from non-significant ones. Consider experiments 4

and 5: even though the sensor locations are almost equal, experiment 4 has still a comparatively

much higher D ÷. This indicates the importance of the sensor location in the optimal design.

The demonstration of the genetic algorithm on the one-dimensional problem provided a good

basis to gain confidence in the algorithm. It also showed that when the objective function is

inexpensive to calculate, the genetic algorithm method does not have any computation time

restriction (relatively to the number of design variables to optimize). The parametric study,

however, requires the analysis of every point in the search space, and thus generally time consuming

even for inexpensive objective functions.

3.8.2.2 Results from the Two Dimensional Analysis

In the two-dimensional analysis, two configurations were investigated in which four design

variables were optimized. Recall that these latter were x, ÷, y,÷, th÷ and/,÷. The design variables

were expected not to all have the same effect on D÷,,_. Since x, ÷ was anticipated to have the largest

influence on D÷,_, the two-dimensional analysis was conducted in two phases. Phase one was

performed with a coarse combination ofn s and nv which required a low CPU time (-25 min), using

the design variable ranges employed by Hanak. The objective was to obtain insight on the relative

importance of each design variable. The first phase allowed for both configurations to fix the

optimal value ofxs ÷equal to zero so that only three variables needed to be optimized in Phase 2, and
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it also allowed to narrow the bounds of the variables to Lp÷
Configuration 1 and 1.0 a t_+ a 3.0 for Configuration 2.

> 0.5 and 0.9 ;/+t s 3.1 for

Phase two was managed in a similar manner as the analysis carded out for the one

dimensional problem: first, the effect of both n, and ng were studied; then the combination chosen

for these genetic parameters was used to perform ten optimization runs. The study of n, and n_

resulted in the use ofn, = 125 and n e = 50 for both configurations. Note that increasing n_ to 125
increased the D+,,_ by 0.3% while the CPU time (and consequentlyf,,_) more than doubled. Thus,

since the computation of D+,,_, was expensive in this case, the values of n, and n_ providing a slightly
less than optimum D+,,,,, were used.

The results for the mean and 95% confidence interval resulting from ten runs for each

configuration were compared with the results by Hanak and are shown in Table 9. Again, the means

of the D+,,_'s from this study are higher than the D*,,_ 's found by Hanak using the parametric

study. These results definitely confirm the assessment of the optimization procedure based on

genetic algorithms. Selecting the optimal experimental parameters as their respective means

rounded to the closest physically possible values, the optimal design for Configuration 1 gave

x,+=0.0, ys+=0.86, _÷=1.0, and ts+=l.39; for Configuration 2, it gave x,+--0.0, y,+=0.0, Lp+=0.14, and

th+=l.40. These values are very close to the optimal experimental parameters determined by Hanak

(x,+=0.0, y,+----0.86, Lp+=l.0, and th+=l.36 for Configuration 1; x, +=0.0, y, +=0.0, Lp +--0.14, and th
+=1.41 for Configuration 2).

Note also, that even though the costs associated with the genetic algorithm operations had a

small impact on the overall computational costs, it is still of interest to study the diverse effects of

using a more elaborated crossover operation, varying the mutation probability and enhancing the
elitist strategy of the algorithm. Indeed, both the use of the best combination of the crossover

operation and mutation probability, and the enhancement of the elitist strategy of the algorithm

could be a means to reduce the population size and/or number of generations, thus reducing the

computation time (and number of function evaluations), and still perform as well. These effects are

currently under investigation.

Table 9. Determination of the Optimal Designs for Configurations 1 and 2 of the Two-

dimensional Experiment (Phase 2, n,=125, ng=50,f,v,_=6375).

Experiment

Conf. 1 Mean

Hanak's

Conf. 2 Mean

Hanak's

for L/= 1.0, the problem

y+* t_ +

0.995± 0.003

th D+,,_(IO +7)

1.41

0.860± 0.001 1.39± 0.01 5.383--.0.018

0.860 1.000" 1.36 5.378

0.0008±0.0004 0.139±0.001 1.40±0.01 5.265±0.013

0.000 0.140

ts symmetric (flux applied across the entire boundary)

5.257
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3.8.3 Conclusions and Future Work

The focus of this paper was on the use of genetic algorithms with real number coding for

designing optimal experiments used to estimate thermal properties. The performance of the

optimization procedure based on a basic elitist genetic algorithm was demonstrated on both one- and

two-dimensional optimal experimental designs previously analyzed, i.e., Scott and Moncman (1994)

and Scott and Hanak (1995), respectively, using the most typically applied method in this field, the

parametric study. The optimal criterion used in both analysis was the well-known D-criterion. It

was found that the genetic algorithm method improved the maximization of the objective function

specified by the D-criterion for both test problems. However, from the one-dimensional analysis,

it was concluded that the use of the basic elitist genetic algorithm did not allow for the distinction

between significant and non-significant parameters. Therefore, the optimization of the two-

dimensional problem was conducted in two phases, the first enabling insight to be obtained on the

significance of each parameter to be optimized. Furthermore, on one hand it was shown that when

the objective function was inexpensive to calculate, as in the one-dimensional analysis, the genetic

algorithm method reduced considerably the computation costs over the parametric study; on the

other hand, when the objective function was highly expensive to calculate, as in the two-dimensional

analysis, due to the need to average the performance of the algorithm over several runs, the genetic

algorithm method tended to be as time intensive as the parametric study, although less tedious to

apply.

Present work involves the development of an extended elitist genetic algorithm that has

shown not only to perform better than the basic elitist genetic algorithm on the cases studied here,

but also to be an effective strategy for the simultaneous estimation of correlated parameters.
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